free responsive website templates

Papers

Papers

  • Mechanotransduction of Strain Regulates an Invasive Phenotype in Newly Transformed Epithelial Cells.
    Chagnon-Lessard, S.; Jean-Ruel, H.; Godin, M.; Pelling, A. E. Front. Phys. 2021, 9. https://doi.org/10.3389/fphy.2021.654613
  • Digital Counting of Nucleic Acid Targets Using Solid-State Nanopores.
    Beamish, E.; Tabard-Cossa, V.; Godin, M. Nanoscale 2020, 12 (34), 17833–17840. https://doi.org/10.1039/D0NR03878D
  • Time Dependent Stress Relaxation and Recovery in Mechanically Strained 3D Microtissues.
    Walker, M.; Godin, M.; Harden, J. L.; Pelling, A. E. APL Bioengineering 2020, 4 (3), 036107. https://doi.org/10.1063/5.0002898
  • Mechanical Stretch Sustains Myofibroblast Phenotype and Function in Microtissues through Latent TGF-Β1 Activation.
    Walker, M.; Godin, M.; Pelling, A. E. Integrative Biology 2020, 12 (8), 199–210.
    https://doi.org/10.1093/intbio/zyaa015
  • DNA Capture by Nanopore Sensors under Flow.
    Sohi, A. N.; Beamish, E.; Tabard-Cossa, V.; Godin, M.
    Anal. Chem. 2020, 92 (12), 8108–8116.
    https://doi.org/10.1021/acs.analchem.9b05778
  • Structural and Mechanical Remodeling of the Cytoskeleton Maintains Tensional Homeostasis in 3D Microtissues under Acute Dynamic Stretch.
    Walker, M.; Rizzuto, P.; Godin, M.; Pelling, A. E.
    Scientific Reports 2020, 10 (1), 7696.
    https://doi.org/10.1038/s41598-020-64725-7
  • Deterministic Paracrine Repair of Injured Myocardium Using Microfluidic-Based Cocooning of Heart Explant-Derived Cells.
    Kanda, P.; Benavente-Babace, A.; Parent, S.; Connor, M.; Soucy, N.; Steeves, A.; Lu, A.; Cober, N. D.; Courtman, D.; Variola, F.; Alarcon, E. I.; Liang, W.; Stewart, D. J.; Godin, M.; Davis, D. R.
    Biomaterials 2020, 247, 120010.
    https://doi.org/10.1016/j.biomaterials.2020.120010
  • Optofluidic Label-Free SERS Platform for Rapid Bacteria Detection in Serum. Hunter, R.; Sohi, A. N.; Khatoon, Z.; Berthiaume, V. R.; Alarcon, E. I.; Godin, M.; Anis, H. Sensors and Actuators B: Chemical 2019, 300, 126907.
    https://doi.org/10.1016/j.snb.2019.126907
  • Programmable DNA Nanoswitch Sensing with Solid-State Nanopores.
    Beamish, E.; Tabard-Cossa, V.; Godin, M.
    ACS Sens. 2019, 4 (9), 2458–2464.
    https://doi.org/10.1021/acssensors.9b01053
  • Strategies for Controlling Egress of Therapeutic Cells from Hydrogel Microcapsules.
    Benavente-Babace, A.; Haase, K.; Stewart, D. J.; Godin, M.
    Journal of Tissue Engineering and Regenerative Medicine 2019, 13 (4), 612–624. https://doi.org/10.1002/term.2818
  • Structural and Mechanical Remodeling of the Cytoskeleton Maintains Tensional Homeostasis in 3D Microtissues under Acute Dynamic Stretch.
    Walker, M.; Rizzuto, P.; Godin, M.; Pelling, A. E.
    Scientific Reports 2020, 10 (1), 7696.
    https://doi.org/10.1038/s41598-020-64725-7
  • Mechanotransduction of Strain Regulates an Invasive Phenotype in Newly Transformed Epithelial Cells.
    Chagnon-Lessard, S.; Jean-Ruel, H.; Godin, M.; Pelling, A. E.
    bioRxiv 2019, 770487.
    https://doi.org/10.1101/770487
  • Time Dependence of Cellular Responses to Dynamic and Complex Strain Fields. Chagnon-Lessard, S.; Godin, M.; Pelling, A. E.
    Int Bio (Cam) 2019, 11 (1), 4–15.
    https://doi.org/10.1093/intbio/zyy002
  • Measuring Single-Cell Phenotypic Growth Heterogeneity Using a Microfluidic Cell Volume Sensor. Jing, W.; Camellato, B.; Roney, I. J.; Kaern, M.; Godin, M.
    Scientific Reports 2018, 8 (1), 17809.
    https://doi.org/10.1038/s41598-018-36000-3
  • ENDOTHELIAL PROGENITOR CELLS ENCAPSULATED IN MATRIX-SUPPLEMENTED MICROGEL IMPROVES CELL RETENTION AND THERAPEUTIC EFFICACY IN PULMONARY ARTERIAL HYPERTENSION.
    Cober, N.; Chaudhary, K.; Deng, Y.; Lee, C.; Rowe, K.; Benavente, A.; Godin, M.; Courtman, D.; Stewart, D.
    Canadian Journal of Cardiology 2018, 34 (10), S135–S136. https://doi.org/10.1016/j.cjca.2018.07.201
  • Single-Cell Matrix-Supplemented Hydrogel Cocooning of Endothelial Progenitor Cells Improves Retention and Therapeutic Efficacy in Pulmonary Arterial Hypertension.
    Cober, N. D.; Chaudhary, K.; Deng, Y.; Lee, C.; Rowe, K.; Benavente, A.; Godin, M.; Courtman, D. W.; Stewart, D. J.
    Cytotherapy 2018, 20 (5), S113.
    https://doi.org/10.1016/j.jcyt.2018.02.335
  • A Vacuum-Actuated Microtissue Stretcher for Long-Term Exposure to Oscillatory Strain within a 3D Matrix.
    Walker, M.; Godin, M.; Pelling, A. E.
    Biomed Microdevices 2018, 20 (2), 43.
    https://doi.org/10.1007/s10544-018-0286-4
  • Identifying Structure in Short DNA Scaffolds Using Solid-State Nanopores. Beamish, E.; Tabard-Cossa, V.; Godin, M.
    ACS Sens. 2017, 2 (12), 1814–1820.
    https://doi.org/10.1021/acssensors.7b00628
  • Cellular Orientation Is Guided by Strain Gradients.
    Chagnon-Lessard, S.; Jean-Ruel, H.; Godin, M.; Pelling, A. E.
    Int Bio (Cam) 2017, 9 (7), 607–618.
    https://doi.org/10.1039/c7ib00019g



Integrating nanopore sensor arrays and addressing them independently within microfluidic networks.

Michel Godin Nanopore Sensor Arrays - Cover of Journal Small
  • Manipulating Electrical and Fluidic Access in Integrated Nanopore-Microfluidic Arrays Using Microvalves.
    Tahvildari, R.; Beamish, E.; Briggs, K.; Chagnon‐Lessard, S.; Sohi, A. N.; Han, S.; Watts, B.; Tabard‐Cossa, V.; Godin, M.
    Small 2017, 13 (10), 1602601.
    https://doi.org/10.1002/smll.201602601
  • Physical Confinement Signals Regulate the Organization of Stem Cells in Three Dimensions.
    Hadjiantoniou, S. V.; Sean, D.; Ignacio, M.; Godin, M.; Slater, G. W.; Pelling, A. E.
    J R Soc Interface 2016, 13 (123).
    https://doi.org/10.1098/rsif.2016.0613
  • Integrating Nanopore Sensors within Microfluidic Channel Arrays Using Controlled Breakdown.
    Tahvildari, R.; Beamish, E.; Tabard-Cossa, V.; Godin, M.
    Lab on a Chip 2015, 15 (6), 1407–1411.
    https://doi.org/10.1039/C4LC01366B
  • Quantifying the Volume of Single Cells Continuously Using a Microfluidic Pressure-Driven Trap with Media Exchange.
    Riordon, J.; Nash, M.; Jing, W.; Godin, M.
    Biomicrofluidics 2014, 8 (1), 011101.
    https://doi.org/10.1063/1.4867035
  • Using Active Microfluidic Flow Focusing to Sort Particles and Cells Based on High-Resolution Volume Measurements.
    Riordon, J.; Nash, M.; Calderini, M.; Godin, M.
    Microelectronic Engineering 2014, 118, 35–40.
    https://doi.org/10.1016/j.mee.2014.02.003
  • A Microscale Anisotropic Biaxial Cell Stretching Device for Applications in Mechanobiology.
    Tremblay, D.; Chagnon-Lessard, S.; Mirzaei, M.; Pelling, A. E.; Godin, M.
    Biotechnology Letters 2014, 36, 657–665.
    https://doi.org/10.1007/s10529-013-1381-5.
  • Fine-Tuning the Size and Minimizing the Noise of Solid-State Nanopores.
    Beamish, E.; Kwok, H.; Tabard-Cossa, V.; Godin, M.
    JoVE (Journal of Visualized Experiments) 2013, No. 80, e51081. https://doi.org/10.3791/51081
  • Three Dimensional Spatial Separation of Cells in Response to Microtopography. Leclerc, A.; Tremblay, D.; Hadjiantoniou, S.; Bukoreshtliev, N. V.; Rogowski, J. L.; Godin, M.; Pelling, A. E.
    Biomaterials 2013, 34 (33), 8097–8104.
    https://doi.org/10.1016/j.biomaterials.2013.07.047
  • Hollow Core Photonic Crystal Fiber as a Reusable Raman Biosensor.
    Khetani, A.; Riordon, J.; Tiwari, V.; Momenpour, A.; Godin, M.; Anis, H.
    Opt. Express 2013, 21 (10), 12340–12350.
    https://doi.org/10.1364/OE.21.012340
  • Field-Flow Fractionation and Hydrodynamic Chromatography on a Microfluidic Chip.
    Shendruk, T. N.; Tahvildari, R.; Catafard, N. M.; Andrzejewski, L.; Gigault, C.; Todd, A.; Gagne-Dumais, L.; Slater, G. W.; Godin, M.
    Anal. Chem. 2013, 85 (12), 5981–5988.
    https://doi.org/10.1021/ac400802g
  • Hollow Core Photonic Crystal Fiber as a Robust Raman Biosensor.
    Altaf Khetani, Ali Momenpour T. Monfared, Vidhu S. Tiwari, Hanan Anis, Jason Riordon, Michel Godin
    Proceedings Volume 8576, Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIII  2013; Vol. 8576, p 85760F.
    https://doi.org/10.1117/12.2004692
  • Using the Fringing Electric Field in Microfluidic Volume Sensors to Enhance Sensitivity and Accuracy.
    Riordon, J.; M.-Catafard, N.; Godin, M.
    Applied Physics Letters 2012, 101 (15), 154105.
    https://doi.org/10.1063/1.4759033
  • Precise Control of the Size and Noise of Solid-State Nanopores Using High Electric Fields.
    Beamish, E.; Kwok, H.; Tabard-Cossa, V.; Godin, M.
    Nanotechnology 2012, 23 (40), 405301.
    https://doi.org/10.1088/0957-4484/23/40/405301
  • Microfluidic Cell Volume Sensor with Tunable Sensitivity.
    Riordon, J.; Mirzaei, M.; Godin, M.
    Lab Chip 2012, 12 (17), 3016–3019.
    https://doi.org/10.1039/C2LC40357A



Tracking the growth of single cells provides insight into the mechanisms that drive the cell cycle.

Michel Godin Laboratory - Cover Nature Methods
  • Using Buoyant Mass to Measure the Growth of Single Cells. 
    Godin, M.; Delgado, F. F.; Son, S.; Grover, W. H.; Bryan, A. K.; Tzur, A.; Jorgensen, P.; Payer, K.; Grossman, A. D.; Kirschner, M. W.; Manalis, S. R.
    Nature Methods 2010, 7 (5), 387–390.
    https://doi.org/10.1038/nmeth.1452

    "News & Views" on above paper: Measuring the Growth Rate of Cells, One at a Time. 
    Charvin, G.
    Nature Methods 2010, 7 (5), 363–363. 
    https://doi.org/10.1038/nmeth0510-363
  • Cantilever-Based Sensing: The Origin of Surface Stress and Optimization Strategies.
    Godin, M.; Tabard-Cossa, V.; Miyahara, Y.; Monga, T.; Williams, P. J.; Beaulieu, L. Y.; Bruce Lennox, R.; Grutter, P.
    Nanotechnology 2010, 21 (7), 075501.
    https://doi.org/10.1088/0957-4484/21/7/075501
  • Mass-Based Readout for Agglutination Assays.
    Chunara, R.; Godin, M.; Knudsen, S. M.; Manalis, S. R.
    Applied Physics Letters 2007, 91 (19), 193902-193902–193903. https://doi.org/doi:10.1063/1.2806197
  • Measuring the Mass, Density, and Size of Particles and Cells Using a Suspended Microchannel Resonator.
    Godin, M.; Bryan, A. K.; Burg, T. P.; Babcock, K.; Manalis, S. R.
    Applied Physics Letters 2007, 91 (12), 123121-123121–123123. https://doi.org/doi:10.1063/1.2789694
  • Microcantilever-Based Sensors:  Effect of Morphology, Adhesion, and Cleanliness of the Sensing Surface on Surface Stress.
    Tabard-Cossa, V.; Godin, M.; Burgess, I. J.; Monga, T.; Lennox, R. B.; Grütter, P.
    Anal. Chem. 2007, 79 (21), 8136–8143.
    https://doi.org/10.1021/ac071243d



The suspended microchannel resonator using a clever microfluidic architecture to provide ultra-sensitive mass measurements of biomolecules and single cells.

Michel Godin Laboratory - Cover of Nature
  • Weighing of Biomolecules, Single Cells and Single Nanoparticles in Fluid. 
    Burg, T. P.; Godin, M.; Knudsen, S. M.; Shen, W.; Carlson, G.; Foster, J. S.; Babcock, K.; Manalis, S. R. Nature 2007, 446 (7139), 1066–1069. 
    https://doi.org/10.1038/nature05741

    Feature on above paper: This Year in Nature. 
    Nature 2007, 450 (7173), 1131–1131. 
    https://doi.org/10.1038/4501131b
  • Integrated Microelectronic Device for Label-Free Nucleic Acid Amplification and Detection.
    Johnson Hou, C.-S.; Godin, M.; Payer, K.; Chakrabarti, R.; Manalis, S. R.
    Lab on a Chip 2007, 7 (3), 347.
    https://doi.org/10.1039/b617082j
  • A Complete Analysis of the Laser Beam Deflection Systems Used in Cantilever-Based Systems.
    Beaulieu, L. Y.; Godin, M.; Laroche, O.; Tabard-Cossa, V.; Grütter, P.
    Ultramicroscopy 2007, 107 (4–5), 422–430.
    https://doi.org/10.1016/j.ultramic.2006.11.001
  • Monitoring of Heparin and Its Low-Molecular-Weight Analogs by Silicon Field Effect. Milović, N. M.; Behr, J. R.; Godin, M.; Hou, C.-S. J.; Payer, K. R.; Chandrasekaran, A.; Russo, P. R.; Sasisekharan, R.; Manalis, S. R.
    PNAS 2006, 103 (36), 13374–13379.
    https://doi.org/10.1073/pnas.0604471103
  • Label-Free Microelectronic PCR Quantification.
    Hou, C.-S. J.; Milovic, N.; Godin, M.; Russo, P. R.; Chakrabarti, R.; Manalis, S. R. Anal. Chem. 2006, 78 (8), 2526–2531.
    https://doi.org/10.1021/ac0520689
  • Calibrating Laser Beam Deflection Systems for Use in Atomic Force Microscopes and Cantilever Sensors.
    Beaulieu, L. Y.; Godin, M.; Laroche, O.; Tabard-Cossa, V.; Grütter, P.
    Applied Physics Letters 2006, 88 (8), 083108–3.
    https://doi.org/doi:10.1063/1.2177542
  • Redox-Induced Surface Stress of Polypyrrole-Based Actuators.
    Tabard-Cossa, V.; Godin, M.; Grütter, P.; Burgess, I.; Lennox, R. B.
    J. Phys. Chem. B 2005, 109 (37), 17531–17537.
    https://doi.org/10.1021/jp052630z
  • A Differential Microcantilever-Based System for Measuring Surface Stress Changes Induced by Electrochemical Reactions.
    Tabard-Cossa, V.; Godin, M.; Beaulieu, L. Y.; Grütter, P.
    Sensors and Actuators B: Chemical 2005, 107 (1), 233–241. https://doi.org/10.1016/j.snb.2004.10.007
  • Surface Stress, Kinetics, and Structure of Alkanethiol Self-Assembled Monolayers. PhD Thesis, McGill University, Montreal, Quebec, Canada, 2004.
    https://escholarship.mcgill.ca/concern/theses/v979v357h



Monitoring the formation and structure of alkanethiol monolayers using a cantilever-based surface stress sensor.

Michel Godin Laboratory - Surface Stress of alkanethiol self-assembled monolayers
  • Surface Stress, Kinetics, and Structure of Alkanethiol Self-Assembled Monolayers. Godin, M.; Williams, P. J.; Tabard-Cossa, V.; Laroche, O.; Beaulieu, L. Y.; Lennox, R. B.; Grütter, P. 
    Langmuir 2004, 20 (17), 7090–7096. 
    https://doi.org/10.1021/la030257l
  • Combined in Situ Micromechanical Cantilever-Based Sensing and Ellipsometry. Godin, M.; Laroche, O.; Tabard-Cossa, V.; Beaulieu, L. Y.; Grütter, P.; Williams, P. J. Review of Scientific Instruments 2003, 74 (11), 4902–4907.
    https://doi.org/doi:10.1063/1.1614859
  • Quantitative Surface Stress Measurements Using a Microcantilever.
    Godin, M.; Tabard-Cossa, V.; Grütter, P.; Williams, P.
    Applied Physics Letters 2001, 79 (4), 551–553.
    https://doi.org/doi:10.1063/1.1387262